福州行测备考

首页 > 事业单位 > 备考资料 > 行测备考

2021年福州事业单位笔试备考:十六大核心公式汇总

福建事业单位考试网 | 2021-05-19 15:44

收藏

  事业单位行测备考过程中数量关系问题难住了很多考生,题海战术纵然是一种解决方案,但是结束后必须对知识点进行归纳、总结,才有可能产生比较好的效果。华图教育汇总了数量关系问题的16个常用核心公式,供考生参考。

  1、弃9验算法

  利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。

  用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。

  对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等

  注:1.弃九法不适合除法

  2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意

  2、传球问题核心公式

  N个人传M次球,记X=(N-1)^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数

  3、整体消去法

  在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去

  4、裂项公式

  1/n(n-k) =1/k (1/(n-k)-1/n)

  5、平方数列求和公式

  1^2+2^2+3^2…+n^2=1/6 n(n+1)(2n+1)

  6、立方数列求和公式

  1^3+2^3+3^3…+n^3=[1/2 n(n+1) ]^2

  7、行程问题

  (1)分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的(2n-1)倍

  (2)A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= (〖2V〗_1 V_2)/(V_1+V_2 ),

  (3)沿途数车问题:

  (同方向)相邻两车的发车时间间隔×车速=(同方向)相邻两车的间隔

  (4)环形运动问题:

  异向而行,则相邻两次相遇间所走的路程和为周长

  同向而行,则相邻两次相遇间所走的路程差为周长

  (5)自动扶梯问题

  能看到的级数=(人 速+扶梯速)×顺行运动所需时间

  能看到的级数=(人 速-扶梯速)×逆行运动所需时间

  (6)错车问题

  对方车长为路程和,是相遇问题

  路程和=速度和×时间

  (7)队伍行走问题

  V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则

  从队尾到队首的时间为:L/(V_1-V_2 )

  从队首到队尾的时间为:L/(V_1+V_2 )

  8、比赛场次问题

  N为参赛选手数,

  淘汰赛仅需决出冠亚军比赛场次=N-1,

  淘汰赛需决出前四名比赛场次=N,

  单循环赛比赛场次=∁_N^2,

  双循环赛比赛场次=A_N^2

  9、植树问题

  两端植树: 距离/间隔+1 = 棵数

  一端植树(环形植树): 距离/间隔= 棵数

  俩端均不植树:距离/间隔-1=棵数

  双边植树:(距离/间隔-1)*2=棵数

  10、方阵问题

  最为层每边人数为N

  方阵总人数=N^2

  最外层总人数=(N-1)×4

  相邻两层总人数差=8(行数和列数>3)

  去掉一行一列则少(2N-1)人

  空心方阵总人数=(最外层每边人数-层数)×层数×4

  11、几何问题

  N边形内角和=(N-2)×180°

  球体体积=4/3 πr^3

  圆柱体积=πr^2 h

  圆柱体积=1/3 πr^2 h

  12、牛吃草问题

  (牛头数-每天长草量)×天数=最初总草量

  13、日期问题

  一年加1,闰年加2,小月(30天)加2,大月(31天)加3,28年一周期

  4年1闰,100年不闰,400年再闰

  14、页码问题

  如:一本书的页码一共用了270个数字,求这本书的页数。

  页数=(270+12×9)/3=126页

  公式:10-99页:页数=(数字+1×9)/2

  100-999页:页数=(数字+12×9)/3

  1000-9999页:页数=(数字+123×9)/4

  15、时钟问题

  小知识:时针与分针一昼夜重合22次,垂直44次,成180°,也是22次

  求时针与分针成一定角度时的实际时间T

  T=T_0+1/11 T_0,其中T_0为时针不动时,分针走到符合题意位置所需的时间

  16、非闭合路径货物集中问题

  在非闭合的路径上(包括线形、树形等,不包括环形)有多个节点,每个节点之间通过“路”来连通,每个节点上有一定的货物。

  当需要用优化的方法把货物集中到一个节点上的时候,通过以下方式判断货物流通的方向:

  1、判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。

  2、适用于“非闭合”的路径问题,与各条路径的长短没有关系;实际操作中,我们应该从中间开始分析,这样可以更快得到答案。

  1、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要运费( )。

  A. 4500元 B. 5000元 C. 5500元 D. 6000元

  解析:本题中四条“路”都具备“左边总重量 轻于 右边总重量”的条件,所以这些“路”上的流通方式都是从左到右。故集中到五号仓库是最优选择。

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有